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We examine the model of self-organized criticality investigated by Hwa and Kardar [Phys. Rev. Lett.
62, 1813 (1989)] based on a continuum, nonlinear driven diffusion equation with stochastic noise. We
point out some problems in the heuristic arguments used in relating the temporal response functions of
the model to the exponents calculated exactly by dynamic-renormalization-group analysis. We propose
an alternative, direct calculation of the response function and its power spectrum for the total energy
dissipated in the system by a mode-coupling theory, making use of the renormalization-group recursion
relations for the renormalized parameters of the theory. We find a significant difference from the previ-
ous results. Simulation results of the “running-sandpile” model agree with our mode-coupling-theory

predictions.

PACS number(s): 05.60.+w, 05.40.+j, 64.60.Ht

I. INTRODUCTION

The phenomena of self-organized criticality is a topic
of intense recent interest. As suggested by Bak, Tang,
and Wiesenfeld [1,2], it relates scale invariances in spatial
and temporal domains. Spatial scaling invariances are
characterized by fractal geometry, while temporal scale
invariances are manifested by 1/w® power spectra. Most
of the models studied so far are cellular automata or
sandpile models [1-4], which, starting from an arbitrary
initial state, evolve automatically into a critical state
characterized by power-law correlations in both spatial
and temporal scales. The name “self-organized criticali-
ty”’ comes from the lack of a tuning parameter such as
the temperature in second-order phase transitions.

Hwa and Kardar [5] recently developed a continuum
model of self-organized criticality. Based on considera-
tions of symmetry and conservation laws in sandpile
models, they have constructed a nonlinear driven
diffusion equation in the presence of stochastic noise to
describe self-organized critical phenomena. A one-loop
dynamic-renormalization-group analysis was applied to
calculated the dynamic exponents z, roughening exponent
X, and the spatial anisotropy exponent § for this model.
These exponents are actually exact because of nonrenor-
malization of the noise spectrum and Galilean invariance.
A heuristic argument was used to relate the temporal
correlations g;(¢)=(J(¢)J(0)) of the total output current
J(¢) and gz (¢t)=(E(¢)E(0)) of the total energy E (¢) dis-
sipated throughout the system, in terms of the exponents
z, £, and . The resulting power spectra for total current
correlations S, () and the total-energy correlation Sy ()
have the forms S;(0)~w ’ and Sg(o)~w F, with
a;=1/z and ag=2/z, respectively. In this paper we
want to point out some problems in the heuristic argu-
ments used in Ref. [5] to relate these temporal correla-
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tions to the exponents z, §, and . In addition, we calcu-
late the temporal correlation gz (¢) directly by applying
the mode-coupling theory [6-9], starting from a linear-
ized theory and making wuse of the known
renormalization-group recursion relations for the renor-
malized parameters in the nonlinear theory. Our results
for the exponents ay differ significantly from those of
Hwa and Kardar.

Very recently, Hwa and Kardar [10] proposed a
“running-sandpile’ model, in which sand grains are add-
ed at a constant rate from the outside and the avalanches
are allowed to collide and coalesce. This “running”’-
sandpile model differs from the original Bak, Tang, and
Wiesenfeld model, in which the input current is zero in
the large-system limit. We have simulated this running-
sandpile model and the result seems to support our
model-coupling-theory predictions.

In Sec. II we will briefly review the model of Hwa and
Kardar, the dynamic-renormalization-group results for
the renormalized parameters, and the heuristic argu-
ments of Hwa and Kardar to relate the temporal
response functions to the exact exponents. We will point
out some problems with these arguments. In Sec. ITII we
will discuss the mode-coupling theory for the calculation
of the total-energy response function starting from a
linearized theory and making use of the known
renormalization-group recursion relations for the renor-
malized parameter in the nonlinear theory. Some details
of the calculations are relegated to an appendix. In Sec.
IV we present our simulation results of a running-
sandpile model [10] in d'=2 dimensions, where the spa-
tial dimension d is d’+ 1. This running-sandpile model,
rather than the original sandpile model of Bak, Tang, and
Wiesenfeld, is supposed to correspond to the continuum
model of Hwa and Kardar [5]. The results of these simu-
lations seem to support our mode-coupling-theory predic-
tions. Section V contains our discussions and con-
clusions.
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II. DYNAMIC RENORMALIZATION GROUP
FOR SELF-ORGANIZED CRITICALITY

In this section we will briefly review the theory of Hwa
and Kardar. We will not repeat their symmetry and con-
servation law considerations in deriving the nonlinear
driven diffusion equation, but will simply start with this
equation itself [5]:

oh A
a7 ~ VO tv.iViR — D9k H(x,t) . (1

The height function h(x,t) is defined as a deviation from
the flat steady-state sand profile. The component of grav-
ity parallel to the surface picks out a direction of trans-
port T. Let x;=(T-x)T and x;=x—x|. The first two
terms on the right of (1) describe relaxation of the height
through surface tension (the Laplacian term is split into
parts parallel and perpendicular to the transport direc-
tion T). The third term is present due to the absence of
x,— —X; symmetry and hence related to the presence of
transport, and 7 represents a stochastic noise. Equation
(1) is invariant under the joint inversion symmetry
h— —h and x,— —X;. In the absence of noise, there is a
local height-conservation law and a transport current
j(x,2) satisfying 9,h +V-j=0, where

j= VA= T+ 20 @
The stochastic noise has the properties (1) =0 and
(n(x,t)n(x’,t'))=2D8%(x—x")8(t —1') . (3)

Here d' is the spatial dimension of the surface described
by x=(x,x,), and the spatial dimension of the system
d=d'+1.

The exponents z, {, and y are defined through the
homogeneous scaling transformation

h(x;,x,,t)=bXh(x,/b,x,/b* 1 /b*) , @)

with a scaling factor b=e'>1.

Hwa and Kardar [5] had performed a dynamic-
renormalization-group calculation on (1). For d’<4, the
terms in the perturbation series diverge due to the in-
frared limit of momentum integrations. For d’'=>4, the
perturbation series diverges also in the ultraviolet. This
is taken care of by introducing two large momentum
cutoffs A, and A, in the two directions. The infrared
divergences are circumvented by integrating out only mo-
menta in an outer shell A;/b<q,<A;, and
A, /b<|q,|<A,, where [=Inb <<1 is the infinitesimal
shell thickness. The remaining modes are inflated back
to the original size by the scaling transformation (4). The
rescaled modes obey (1) with renormalized parameters
satisfying recursion relations of the form

] —d’

i =v |z—2+uw E%) , (5a)
dv,

7=vl(z——2§) ) (5b)
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i =Mz+yxy—1), (5¢)
%?—=D[z—2x+(l—d’)§—l] R (5d)

where u =[2S,_;/2m)?][A’D /(v{v,)*"*] is the effective
coupling constant (S, being the surface area of a unit d’-
dimensional sphere). From (5), the recursion relation for
u follows:

_T1—d’ 3w

D u (5e)

du ,

T (4—d')¢

The recursion relations (5b) to (5d) are just those of

homogeneous scaling. Only the parameter v, is renor-

malized. The nonrenormalization of v, and D come from
the fact that the nonlinearity in (1) is proportional to the
external momentum k. The nonrenormalization of A is
due to the invariance of (1) under the Galilean transfor-
mation: x;—x, —€At, t —t,and h —h +ex,. From Egs.

(5), the exponents are determined exactly:

__ 6 1—d'’ = 3
7—d’ "’ 7—d'
To make connection with 1/f noise, Hwa and Kardar

consider the frequency dependence of some macroscopic

response functions. A natural choice is the total output
current J(¢t)= fdd'_lxlj(L”,xl,t) with integration at
the system edge at x;,=L,. From (2), the cumulant

(j(x,,,xl,t)j(x“,0,0)>c is given by

(xpxy,1)j(x,0,0)) . ~{hA(x,,x,2)h%(x,,0,0)), . ()
I It It Il

z (6)

Here the term cumulant means the connected part with
the product terms of lower order subtracted off. In the
current density j only the dominant term has been taken
into account. Using the scaling form (4) for 4, we have

(j(x”yxj_)t)j(x||;0y0)>c~ |Xlt4x/§f(t/|xﬂ”§ . (8)

Notice that (8) holds only asymptotically, i.e., for large
values of |x,|. Let us denote the range of |x,| beyond
which (8) holds as R, then we have

(T@0I©0)= [Fa%1x j(x,x,,1)j(x,,0,0))
+Af:dd"lxllxll“x/gf(t/le\”g), )

where A4 is a proportionality constant. If we assume

R =0, then we have from (9)

(J(t)J(O))~fow\xl|4x/§f(t/|xl|”§)|xlld"2dxl . (10)

Changing the variable of integration to y =¢/|x, |?/%, we
obtain

(J()J(0)), ~¢l8xHd=1él/z (11)

Substituting the values of the exponents (6) we have
(J()J(0)),~t'V271 Fourier transforming this, we
have
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(1/z)—1
X

(0]

SJ(w)~ft(1/z)—leia)tdt=f

(12)
This gives the exponent a;, defined by S;(w)~w % as
a;=1/z.

Similarly, for the total energy E(t) dissipated
throughout the system at time ¢ we have
E(t)~fdd'xh2(x”,xl,t). Using the same procedure as
before, we find for the response function

ge(t)=(E()E(0)) ~ ¢l +(d=Di+11/z (13)

Using the values of the exponents given in (6) we find
gp(t)~t?/971  Taking the Fourier transform, we have

SE(w)~ft(Z/z)—leimtdt~w—2/z . (14)

The exponent ay defined by Sg(w)~w F
by ap=2/z.

At first sight, the heuristic arguments of Hwa and Kar-
dar given above, which yield the relations between aj,
ag, and z, seem to be fine. However, as we look more
closely, we find that there are problems. Using (6) we find
for the exponent in the integrand of (12) to be
(1/z)—1=0, —1, —1, and —, respectively, for d’'=1,
2, 3, and 4. Since this exponent is negative, the Fourier
transform defined in (12) exists and there is no problem.
For the exponent in the integrand of (14), however, we
find (2/z)—1=1, %, 1, and O, respectively, for d'=1, 2,
3, and 4. Since this exponent is positive, the Fourier
transform (14) is not defined. Therefore the relation
ap=2/z is in doubt. Also we believe that the temporal
correlation function gg(¢), which increases with time, is
not physical. We think the problem can be traced back
to the assumption R =0 in (9) to obtain (10), from which
(11) and (13) follow.

is then given

III. MODE-COUPLING THEORY

In this section we will describe a direct calculation of
the response function gg(t¢) within the mode-coupling
theory. We start with the linearized version of (1):

oh

o = Vi0fh FviVik +a(x,0) . (15)
Defining the Fourier transform of 4 (x,x,,¢) as
' ikyxy, ik
h(x”,xl,t)=—l7fdk“dd 2klﬁ\(k”,kl,t)e [ P
(2m)
(16)
Eq. (15) can be written as
Ot —v B+l ) 17

The solution of (17) has the form
—(v 2 2 v 2 v 2
Rl kppry=e T [lgs T 0 ke s)
(18)

We will only be interested in the response function gg(t),
which is easier to calculate than the function g,;(¢) within
the framework of mode-coupling theory. For gp(t) we
have

ge(n= [d¥xd ¥y (h¥(x,0)h¥(y,t"),
=3k, 0)PR(q, )., (19)
k.q

where 7=t —1t'|.
Using the solution (18) for k and the noise spectrum in
k space

(A(k,1)Ak’, ")) =2D8%(k+k')8(t—1t") , (20)

we obtain the expression for gg(7) in the limit ¢,t'— oo,
t>t', r=t—t' finite, and k,=1/L finite, where L is the
linear size of the system (see Appendix):

&
L o T2 sin? ~20 —2k (v cos26+ v sin26)
(1)=D* | = | Sg_ dk k4! de e i . . 1)
8z 2r | ¢ J ko i k(v cos?0+v,sin’0)
The power spectrum Sg(w) is given by the real part of the Fourier transform of (21). We obtain for d’ =2,
2| L “ o di—1 [T sin? 20 1
Sglw)=—2D" |— | Sz_— dk k¢~ do . (22)
E 2r | ¢ J ko J. 0 k*(vcos’0+v,sin’0) w’+4k*(v cos’6+v sin’6)’
For d'=4, (21) becomes
&
L w/2 sin26 w dk  —2k2r(vcos?6+v sin20)
(r)=D?|=1| § dé —e I SR (23)
8z 27 } fO (vjcos*0+v,sin?6) f"o k

The k integral diverges logarithmically at the upper limit as —0. Therefore for d'=4, gg(7)~Inr, for 7—0. This is in
agreement with the result (2/z)—1=0 at d’'=4 of Hwa and Kardar but only in the limit 7—0. For finite 7, gg(7) is
finite and we find numerically that it decreases monotonically with 7.

For d’ =4, the k integral in (22) can be performed analytically. We find
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a 2 2 2
L 1 p=2 sin%@ P _ 2ko(vucos 6+ v,sin“0)
Splw)=—1D? | = | S;_;— de ——tan"! (24)
E : 2 o fO (vjcos?0+v,sin’0)* | 2 , )

This gives Sg(w)~1/w for d'=4 and large w, in agreement with the result of Hwa and Kardar. We have also evalu-
ated the double integral in (22) numerically and verified the result az =1 for d’'=4 to high accuracy.

For d’' <4, the form of the response function (21) and that of the power spectrum (22) for the linear theory can be
used to obtain the corresponding quantities for the nonlinear model within the mode-coupling approximation by rewrit-

ing (21) and (22) in the forms [6-9]:

-
L . /2 sin? ~20D2%(k)d 6 —2k 21 v, (k)cos20+ v, (k)sin28)]
(r)=8y_,|— k4~ dk I . , (25)
8e a2 fko fo K*(vy(Kk) cos?0+v, (k) sin?0)
v
L @, g .y sin? 20D *(k)d 6 1
Splw)=—2|=—=—| S,_ k¥ ldk . (26)
E 2 ] ko fo k2[vy(k)cos?0+v,(k )sin?0] w?+4k*[v,(k)cos’0+v,(k )sin’6]>

The scale-dependent parameters D(b), v“(b), and v,(b)
can be obtained by solving the recursion relations (5a) to
(Se) for these parameters as a function of the scaling fac-
tor b and by making the substitution b —(1/k cosf). Us-
ing (6) for the exponents z, X, and §, the solutions of the
recursion relations have the form:

vi(b)=v?, D(b)=D%, AMb)=A%, 27
2/3
(4—de+1=2 3T -y
v, =vBp?? 232
= (4—d")¢ ’
(28)

where VIIIB’ vf, AZ, and u® are bare values of these parame-
ters. Making the replacement b—1/(k cosf) in (28) and
substituting these equations into (26) we find by numeri-
cal evaluation of the double integral that to very high ac-
curacy, Sp(w)~w F, with az=1.95 for d’=2 and
ap=1.54 for d’=3. We have checked that these results
are independent of L and the values of the bare parame-
ters. For d'=1, the double integrals in (24) reduce to a
single integral and we find a; =2 for that case, in agree-
ment with Hwa and Kardar. But for d’=2 and d'=3
our results for aj differ significantly from theirs
(2/z=1=1.67, 1.33 for d'=2,3).

Similarly, Eq. (25) can be used to obtain gz (7) for the
nonlinear model by substituting the k dependence of v
into it and carrying out the integration. We find that
ge(7) is a monotonic decreasing function of 7 for all d’,
as expected.

IV. SIMULATION OF A “RUNNING-SANDPILE”
MODEL

Hwa and Kardar have suggested [10] that the continu-
um model (1) describes a running-sandpile model in
which the avalanches can interact and coalesce. This is
different from the original sandpile model of Bak, Tang,
and Wiesenfeld (BTW) in which sand grains are added
one at a time and the system is allowed to completely re-
lax between additions. In the running-sandpile model,

there is a finite input current J;, of sand grains per unit
time. For a system of L XL sites in d’'=2 dimensions,
the probability per site of depositing a particle is taken to
be p=J,,/L? per unit time. In the original BTW model,
the input current J;, is zero in the infinite system limit.
In the running-sandpile model we sweep through every
site of the lattice and deposit a particle with a probability
p depending on the size of the system as given above, in
one time unit. Simultaneously within this same time unit
we sweep through every site of the lattice and apply the
BTW sandpile relaxation rules to any site which has a
“slope” Z above the critical value Z,

Z(x,y)—Z(x,y)+1 with probability p (29a)
Z(x,y)—>Z(x,y)—4,

Z(x+1,y)>Z(x+1,p)+1,
Z(x—1,y)>Z(x—1,y)+1, Z(x,y)>Z,, (29b)

Z(x,y+1)—>Z(x,y+1)+1,
Z(x,y—1)—>Z(x,y—1)+1,

where (x,y) denotes the coordinates of a point on the
square lattice. At the boundary of the system
Z(boundary)=0 at all times. This corresponds to the
open boundary condition, where sands fall off the edge of
the system. After every site in the system has been re-
laxed once by applying the results (29b) successively once
for every site, the time is increased by one unit. Irrespec-
tive of whether all the sites in the system have relaxed to
a value below or at the critical value Z_, in the next time
unit sand grains are again deposited at every site with
probability p and the process continues. Here is where
the running-sandpile model differs from the original
BTW model. In the BTW model, sand grains are added
only after the system has relaxed to a situation where all
Z(x,y) are below or at the critical value z,. The addi-
tional of sand grains from outside at a constant rate in
the running-sandpile model provides an external clock.
In the BTW model time is not well defined since the in-
terval between sand additions varies.

The physical quantities that we measure are the
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response functions for the sand current J(¢) flowing out
of the system and the total-energy dissipation E (¢), or the
total number of relaxation processes via (29b), at time ¢.
Starting from any initial configuration for the ‘“slope”
Z (x,y), the system is run for a sufficient length of time ¢,
until the steady state has been reached. This can be most
easily checked by calculating the average { Z(x,y)) and
the fluctuations (AZ?) defined by (Z)=L 723,  Z(xy),
(AZ?)=(Z?*)—(Z)? and (Z*)=L"*3, ,Z%(x,y), as
a function of the time ¢ until these quantities become con-
stant in time. Then we start calculating the response
functions defined by

gx(M=T""[ Xt +nX (vt , (30)
0

where T is some period of time much larger than ¢, and
X denotes either the current J(¢) flowing out of the sys-
tem or the total-energy dissipation E (¢) at time ¢. The
current J (¢) can be calculated by counting the number of
occurrences of (29b) right next to the boundary of the
system at time ¢ and total-energy dissipation E (¢) can be
calculated by counting the total number of occurrences of
(29b) in the whole system at time ¢. The power spectrum
is given by the cosine Fourier transform of the response
functions

Sy(w)= [ gy(r)coswrdr . 31)

In Fig. 1 we show the power spectrum S;(w) for the
current J (¢) in a log-log plot with the input current fixed
at J;, =0.5 and system size L =80 for d’=2. The dashed
lines indicate the regions in the spectrum where the log-
log plot shows a linear behavior. In this figure we can
identify three regions as predicted in Ref. [10] and found
in one-dimensional simulations by the same authors. In
the high-frequency region, which corresponds to short-

LRRLI —TTrrrm T T Trrm
| | |

$,(@)

0.2 Lol L ol L1l

0.01 0.1 1
(0]

FIG. 1. Double logarithmic plot of the power spectrum
S;(w) for the current response function at input current
Jin=0.5 and system size 80X80. The dashed lines indicate
linear regions with slopes —0.31 and —0.77 at intermediate
and large frequencies, respectively.
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time scales, we find the exponent [3;,~=0.77 defined by

Sjw)~w % this short-time-scales region collisions
of avalanches are negligible and we have the sandpile
model of BTW. In the intermediate frequency region
corresponding to intermediate time scales, collisions of
avalanches are important and we find the exponent
a;~0.31 defined by S;(w)~w ’. At very long time
scales, which correspond to the low-frequency region, we
find that the power spectrum increases with frequency.
This is the region of “great event” as found in Ref. [10],
in which the sandpile exhibits systemwide discharge
events and corresponds to a region of anticorrelations.
Our results are too rough to estimate the exponent ¢
defined by S J(w)~co+"’ in this frequency range and pre-
dicted in mean-field theory to be =1 [10].

The different scaling regimes are seen more clearly in
the power spectrum Sg(w) of the total energy, shown in
Fig. 2 for d'=2. This shows a log-log plot of the total-
energy spectrum at fixed input current J;, =0.5 and sys-
tem sizes L =80. The dashed lines indicate the regions in
the spectrum where the log-log plot shows linear behav-
ior. Again three regions can be identified. At high fre-
quencies, which correspond to small-time scales for
which collisions among avalanches are negligible, we find
the exponent By defined by Sg(w)~w BE, to be B ~=1.5,
which is close to the value of BTW [1,2]. At intermediate
frequencies, which correspond to intermediate time
scales, collisions among avalanches are important and we
find the exponent ay defined by Sp(w)~w F, to be in-
creasing with system size. For the largest system that we
have simulated, L =80, we find az=1.85. This value of
ag differs from Hwa and Kardar’s estimate of 1.67 and is
close to our mode-coupling-approximation result of 1.95

'lllll T llllllll | Illlllll T
5 —
10 \ 80x80 E
J._=0.5 3
in -
R a
5 10 3
2] 3
1000 =

100 lllll 1 L Illllll L 1 lllllll 1

0.01 041 1
(0]

FIG. 2. Double logarithmic plot of the power spectrum
Se(w) for the total-energy response function at input current
Jin=0.5 and system size 80X 80. The dashed lines indicate
linear regions with slopes —1.85 and —1.50 at intermediate
and large frequencies, respectively.



47 MODE-COUPLING THEORY AND SIMULATION RESULTS FOR . . .
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= J L
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1 J, =05 r
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4 L
1 L
0.4% r
] 3
0.2 T T T T T T
(o] 50 100 150 200
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FIG. 3. The current-current response function g,(t) vs time ¢
for input current J;; =0.5 and system size 80X 80.

at d’=2. The very low frequency or long-time behavior
of SE(w)~w+"’ is seen only for small system sizes. This
is because the response function g;(¢) approaches its
asymptotic, long-time behavior at much larger time ¢
than for the response function g,(z), and for larger sys-
tem size, one has to go to even longer time ¢ to approach
the asymptotic behavior.

In Fig. 3 we show the current response function g,(z)
for input current J;; =0.5 and system sizes L =80. We
see that the asymptotic value of 0.25 is obtained very rap-
idly as the time ¢ increases. The asymptotic value of } is
consistent with the fact that in the steady state, the aver-
age output current must be the same as the input current
(J(t))=J,,. In Fig. 4 we show the total-energy response
function g, (z) for input current J;, =0.5 and system sizes
L =80. In contrast to the current response function, we
see that the total-energy response function g (#) has bare-
ly reached an asymptotic value at the maximum time of

1.75 T 1 1 T rj T T T I L} T 1 T I L} T T T
1.65 [ 80x80 -
i 31,05 .
= L ]
£ 155 —
of r 71
V.‘ o -
. C ]
— o -
1.45 |- —
1 35 [ L 1 1 1 l L L '} 1 l 1 1 L L l A 1 1 L
0 50 100 150 200
t

FIG. 4. Same as Fig. 3, but for the total-energy response
function gg(z2).
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- J, =10 .
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10 lll L L 1 Illlll 1 L lllllll 1

0.01 0.1 1

w

FIG. 5. Double logarithmic plot of the power spectrum
Sg(w) for the total-energy response function at input current
Jin = 1.0 and system size 30 X30X 30. The dashed line indicates
linear region with slope —1.82.

about 200. That is the reason why we do not see the very
small frequency great event region in the power spectrum
Sg(w), except for small system sizes. To see the great
event region in Sg(w) one has to go to much longer times
in the total-energy response function than is done here.
The above results are obtained for d’=2. For d’'=3
we have simulated a 30X30X30 system. In Fig. 5 we
show the log-log plot of the power spectrum Sg(w) for
the total-energy response function, for input current
Jin=1.0. At this value of the input current, the slope of

1000 ETTT T T T T T T TTTT0 T
100 E \
=2 30x30x30
& 0F E
- J, =0.01 .
in
1 E =
01 lllll 1 1 lllllll 1 1 lllllll A
0.01 0.1 1
w

FIG. 6. Double logarithmic plot of the power spectrum
Se(w) for the total-energy response function at input current
Jin=0.01 and system size 30X30X30. The dashed line indi-
cates linear region with slope — 1.64.
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the curve is about —1.8 compared with the prediction of
—1.54 of the mode-coupling theory. In Fig. 6 we show
the log-log plot of the power spectrum Sg(w) for the
total-energy response function for input current
Jin=0.01. The slope of the curve is about —1.60. This
is quite different from the value at J;;=1.0. So in d'=3
there is again qualitative evidence for a crossover behav-
ior of ay from the noninteracting avalanches limit to the
interacting avalanches limit. In higher dimensions, the
average avalanche duration is larger. Therefore one has
to use a much smaller input current in order for the
avalanches not to interact. A very small J;, would re-
quire much longer running time to get the same statistics.

V. DISCUSSIONS AND CONCLUSIONS

We have presented a mode-coupling-approximation
calculation for the exponent a of a continuum model of
self-organized criticality proposed by Hwa and Kardar
[5]. The result of our calculation for the exponent aj
characterizing the power spectrum for total-energy
response function differs significantly from the result of
Hwa and Kardar in d’=2 and 3. As shown in the Ap-
pendix, in the mode-coupling theory we have taken an-
isotropy of the system into account by separating k into
k, and k, and by replacing b by 1/(k cos6). We have
simulated a running-sandpile model proposed by Hwa
and Kardar [10] to be described by their continuum mod-
el for a system with open boundaries on the square lat-
tice. The results of our simulations give ay =~1.9, which
is quite different from the Hwa-Kardar prediction of
ap==1.67, and seem to support our mode-coupling-
approximation results in the interacting-avalanches re-
gime.
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Although the mode-coupling theory is in principle an
uncontrolled approximation, it has been known to give
good results in other applications [7,9]. It has been
known to give good results in the velocity-velocity corre-
lation function of the random-force driven Burger equa-
tion [7], as well as in universal scaling functions and am-
plitude ratios in surface growth problems [9].

Finally we would like to point out that the running-
sandpile model described above was also studied by Jen-
sen, Christensen, and Fogedby [11], in which one finds
the following statement in the next to the last paragraph
of their paper: we simply continuously add sand random-
ly (in time and space) at a constant rate and let the model
evolve according to the updating algorithm. In their
model they did not find a crossover behavior in a; but in-
stead found that ap=2.0, which is close to our mode-
coupling result of 1.95. From this they concluded that
the Bak, Tang, and Wiesenfeld sandpile model has a 1/f2
power spectrum in d’'=2 dimensions. From our results
we believe that they had probably used an input current
Jin» Which is too large, so that they are in the region in
which the avalanches always interact. In their figure cap-
tion for their power spectrum it is stated that the proba-
bility for adding sand at one site is 0.05 per time step.
This value of the probability is about three orders of mag-
nitude larger than our value of 0.5/(80)%.
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APPENDIX: RESPONSE FUNCTION FOR THE LINEARIZED THEORY

From (19) for the response function gz(7), we need to calculate the cumulant 3,  {|A (k, t)1%|h(q,t')|?),, where

—2t(vyk? +v k2) pt t (vyk % +v k2 )s, +5,) o N
|h(k,t)|*=e I L fodslfodsze PP T A ks R — K, 55 ) .

Therefore, we have

2 N2y — o, 2kl vk 20yt +vhe o t ¢ v vkt +v kDsy +s,)
S(hk, )2 h(q,t)?)=Se e fodslfods2fo dalfo do,e

k,q k,q

Xe(vllqﬁ+vlqi)(al+02)

X {A(k,s ) —Kk,5,)0(q,0 )7 —q,0,)).

Using (20), only pairwise combinations of 7’s in the expectation are finite and we have, for ¢ > ¢’,

k,q

_ 2 v 2 v 2 v 2
S (h(k,)2h(q,t)2)= |DSe 1FIT ik‘)tfgtdsez( it m)sl
k

— 2 2y, . 2 2
DZe 2(v"q”+vlql)t ftds e2(v”q"+vlql)s
q 0

_ 2 2 ’ ’ ' _ 2 2
+2D22€ 2(v”k”+vlkl)(t+t)ftds1ftdsze 2(v"ku+vlkl)(sl+52) ]
0 0
k

The first term in the last equation drops out when we take the cumulant, which means dropping all products of lower

order, and we have for ¢t > ¢’
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2

—2vk2+v k2)t+1") I vk +v k2)s

S(Ih(k,2)h(q,t)|?),=2D*Fe ~ W11 [Fas T

k,q Kk 0

2
2wk +v k2

2wkt vkt | 1—e VIR

=2D?Ye
% 2(v"kﬁ+vlkf)
—2D°y 1 {e—2(v||kﬁ+vikf)(t+t’)_ze—2(v”kﬁ+vlkf)t+e—-2(v”kﬁ+vlkf)(1—t')} .
K 4(v“kﬁ+vlkf)2
In the limit £ — o, t'— o0, ¢t > ¢', only the last term survives, and we have
D? 1 — 2wk 2 +v k2 )1 —1")
S{hk, P h(q,t)?) =" —F5——F5e ~ I
& ’ 2 T vkl tvkl)
d’ ’
L © g w/2 sin? ~20 —2(vycos?0+v,sin20)k 2z — 1)
=S, _,D? | = k¥ ldk de I ! ,
a'-1 27 fL -1 fo (vjcos’0+v,sin’0)*k*
which is Eq. (21).
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